Effects on turning of microinjections into basal ganglia of D(1) and D(2) dopamine receptors agonists and the cannabinoid CB(1) antagonist SR141716A in a rat Parkinson's model.
نویسندگان
چکیده
Brain cannabinoid CB(1) receptors are expressed in neural areas that contribute to movement such as basal ganglia, where they co-localize with dopamine D(1) and D(2) receptors. The objective of the present study was to further study the functional role of CB(1) receptors along with D(1) and D(2) dopamine receptors of basal ganglia by local injections of SR141716A (CB(1) receptor antagonist), SKF-38393 (D(1) agonist), and quinpirole (D(2) agonist), in a rat Parkinson's model. Turning response after amphetamine was considered as the parkinsonian variable for quantifying motor effects of drugs. The findings indicated that, after intrastriatal infusions, both D(1) or D(2) dopamine receptor agonists alone reduced turning in parkinsonian rats. At the pallidal and subthalamic levels, D(1) (not D(2)) receptor stimulation also reduced rotation. Regarding SR141716A-induced effects, CB(1) antagonism reduced motor asymmetry in parkinsonian rats after injections into striatum, globus pallidus, and to a lesser extent, subthalamic nucleus. At the level of dorsal striatum, effects of SR141716A were mediated through an opposite modulation of D(1) and D(2) dopamine receptor function. At the pallidal and subthalamic nucleus levels, motor effects after SR14716A are not associated to modulation of D(1) and D(2) receptor function.
منابع مشابه
Statistical Parametric Mapping reveals ligand and region-specific activation of G-proteins by CB1 receptors and non-CB1 sites in the 3D reconstructed mouse brain
CB(1) receptors mediate the CNS effects of Delta(9)-tetrahydrocannabinol and synthetic cannabinoids. Previous studies have investigated cannabinoid-mediated G-protein activity in a subset of brain regions thought to mediate the behavioral effects of cannabinoids, but a detailed regional comparison of the effects of multiple ligands has not been conducted. This study used a novel approach, Stati...
متن کاملLigand-induced regulation and localization of cannabinoid CB1 and dopamine D2L receptor heterodimers.
The cannabinoid CB(1) (CB(1)) and dopamine D(2) (D(2)) receptors are coexpressed in the basal ganglia, an area of the brain involved in such processes as cognition, motor function, and emotional control. Several lines of evidence suggest that CB(1) and D(2) receptors may oligomerize, providing a unique pharmacology in vitro and in vivo. However, limited information exists on the regulation of C...
متن کاملCannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice.
The purpose of these studies was to characterize the effects of agonists of the CB(1) cannabinoid receptor on cerebellar function in mice. We used two measures specific for cerebellar function: gait analysis and the bar cross test. CB(1) receptor agonists CP55940, Win 55212-2, Delta(9)-tetrahydrocannabinol, arachidonylethanolamide (AEA), and two AEA analogs with high affinity for the CB(1) rece...
متن کاملCB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum.
CB1 cannabinoid receptors in the neostriatum mediate profound motor deficits induced when cannabinoid drugs are administered to rodents. Because the CB1 receptor has been shown to inhibit neurotransmitter release in various brain areas, we investigated the effects of CB1 activation on glutamatergic synaptic transmission in the dorsolateral striatum of the rat where the CB1 receptor is highly ex...
متن کاملCB1 cannabinoid receptor-mediated modulation of food intake in mice.
1 Marijuana's appetite-increasing effects have long been known. Recent research suggests that the CB(1) cannabinoid receptor antagonist SR141716A may suppress appetite. This study represents a further, systematic investigation of the role of CB(1) cannabinoid receptors in the pharmacological effects of cannabinoids on food intake. 2 Mice were food-restricted for 24 h and then allowed access to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of disease
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2004